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Abstract. A generalized mixed theory for bending analysis of axisymmetric shear deformable laminated circular
cylindrical shells is presented. The classical, first-order and higher-order shell theories have been used in the analy-
sis. The Maupertuis–Lagrange (M–L) mixed variational formula is utilized to formulate the governing equations
of circular cylindrical shells laminated by orthotropic layers. Analytical solutions are presented for symmetric
and antisymmetric laminated circular cylindrical shells under sinusoidal loads and subjected to arbitrary boundary
conditions. Numerical results of the higher-order theory for deflections and stresses of cross-ply laminated circular
cylindrical shells are compared with those obtained by means of the classical and first-order shell theories. The
effects, due to shear deformation, lamination schemes, loadings ratio, boundary conditions and orthotropy ratio on
the deflections and stresses are investigated.
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1. Introduction

Shell structures find application in many fields of engineering, notably civil, mechanical
and aeronautical disciplines. The generally high strength-to-weight ratio of the shell form,
combined with its inherent stiffness, has formed the basis of modern applications of shell
structures. For example, in the marine industry, composite shell structures are considered for
submersible hulls or for the support columns in offshore platforms. Furthermore, composite
shell structural configurations of moderate thickness can be potentially used for components
in the automobile industry and in space vehicles as a primary load-carrying structure. Of all
existing shell models, the circular cylindrical shell is perhaps the most widely studied. It has
applications in chimney design, pipe flow, and aircraft fuselages, to name a few. Cylindrical
shells are also widely used as tanks, boilers, gas and water conduits, cisterns, etc.

A shell may be defined as a relatively thin structural element, in which the material of the
element is bound between two curved surfaces that are a relatively small distance apart. The
behavior of a shell is usually modeled on the basis of its middle surface (alternatively referred
to as mid-surface), which is the locus of interior points equidistant from two bounding surfaces
of the shell [1, pp. 1–22].

A number of theories for laminated composite shells exists in the literature. Shells are
often modeled using the classical (i.e., Love–Kirchhoff first-approximation) shell theory [2–
6], which does not account for transverse shear strains. One of the important characteristics
of most of the present-day advanced composites is the high ratio of extensional-to-shear
modulus. This may render the classical theories inadequate for the analysis of moderately
thick composite shells. The higher-order shear deformation theories could potentially produce
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Figure 1. Closed circular cylindrical shell under internal and external loads.

much more accurate results. Several refined shell theories and models have been developed in
the last three decades [6–21].

The governing equations of higher-order, often not exceeding third-order, shell theories are
very complicated. They are simplified if their deformations are axisymmetric, i.e. derivatives
with respect to the circumferential coordinate are equal to zero. Recently, Zenkour [22] has
developed a higher-order shear deformable shell theory for the vibration analysis of axisym-
metric deformable layered orthotropic circular cylindrical shells. The governing equations
were obtained using the M–L mixed variational formula [23]. Another mixed variational
formula based upon Hamilton’s principle has been presented by Zenkour [24] for laminated
structures (see also [25–28]). This mixed variational formula is an extension to earlier work
[29] for homogeneous structures (see also [30]).

The present work uses a mixed generalization of the higher-order shell theory of Zenkour
[22] to study the bending of cross-ply laminated closed circular cylindrical shells. Govern-
ing equations are obtained using the M–L mixed variational formula. Once again, the M–L
mixed variational formula is used to find the analytical solutions of the theory for a variety of
boundary conditions and lamination schemes. Numerical results for deflections and stresses
obtained using the classical, first-order and higher-order shell theories are compared.

2. Derivation of various shell theories

Consider a fiber-reinforced laminated composite circular cylindrical shell of finite length L

and total wall thickness h (see Figure 1). Let the shell undergo bending due to internal
and external loads p(z) and q(z), respectively. The closed circular cylindrical shell under
consideration is composed of a finite number, N , of uniform-thickness orthotropic layers.

In the case of linear axisymmetric deformation, the points of the shell displace in the radial
and axial directions only and these displacements are independent of the angle θ . The most
commonly used shell theory is the classical theory, which is based on the displacement field

ur(r, z) = u(z), uz(r, z) = w(z) − ξ
du

dz
, (2.1)

where (ur, uz) are the displacements along the (ξ, z) coordinates; (u, w) are the radial and
axial components of the displacement of a point on the mid-surface of the shell. It is to be
noted that the thickness coordinate ξ is introduced here, instead of the radial coordinate r,
such that (A notation of all symbols is given in Appendix A):

r = R

(
1 + ξ

R

)
, ξ0 ≤ ξ ≤ ξN, R = a + b

2
. (2.2)
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The displacement field (2.1) implies that straight lines normal to the mid-surface before defor-
mation remain straight and normal to the mid-surface after deformation. It is clear that, for the
classical theory, all strains except εzz are zero. The first-order shear deformation shell theory
is based on the displacement field

ur(r, z) = u(z), uz(r, z) = w + ξϕ(z), (2.3)

where ϕ is the rotation of the normal to the mid-surface at ξ = 0. The following displacement
field of the higher-order shear deformation shell theory can be found in Zenkour [22]:

ur(r, z) = u(z), uz(r, z) = w(z) + ξ

[
ϕ(z) − 1

3

(
ξ

h/2

)2 (du

dz
+ ϕ(z)

)]
. (2.4)

All technical shell theories up to and including higher-orders, in the case of axisymmetric
shear deformation cylindrical shells, can be derived from the displacement field

ur(r, z) = u(z), uz(r, z) = w(z) + ξ

[
α

du

dz
+ βϕ(z) + γ ξ 2

(
du

dz
+ ϕ(z)

)]
. (2.5)

The above displacement field contains the displacement field of the classical shell theory, the
first-order shear deformation shell theory and the higher-order shear deformation shell theory.
We have

(i) Classical Shell Theory (CST): α = −1, β = γ = 0;

(ii) First-order Shell Theory (FST): α = 0, β = 1; γ = 0;

(iii) Higher-order Shell Theory (HST): α = 0, β = 1, γ = −4/(3h2).
The classical shell theory can also be obtained from the first-order shell theory by setting

ϕ = −du/dz.
Substituting Equation (2.5) in the strain-displacement relations referred to the cylindrical

coordinate system, taking into account that derivatives with respect to the circumferential
coordinate are equal to zero, we obtain

ε1 = εrr = ∂ur

∂r
= 0, ε2 = εθθ = ur

r
= u

R

(
1 + ξ

R

)−1

,

ε3 = εzz = ∂uz

∂z
= dw

dz
+ ξ

[
α

d2u

dz2
+ β

dϕ

dz
+ γ ξ 2

(
d2u

dz2
+ dϕ

dz

)]
, ε4 = 2εθz = 0,

ε5 = 2εrz = ∂ur

∂z
+ ∂uz

∂r
= (1 + α)

du

dz
+ βϕ + 3γ ξ 2

(
du

dz
+ ϕ

)
, ε6 = 2εrθ = 0.

(2.6)

3. Mixed variational formulation

The first-order shell theory includes a constant state of transverse shear strain with respect to
the thickness coordinate. In fact, it requires a shear correction factor, which depends not only
on the material and geometric parameters, but also on the loading and boundary conditions.
In addition, the higher-order shell theory involves additional higher-order stress resultants
and material stiffness coefficients compared to the first-order shell theory. The utilization
of the mixed variational principles allows one to deduce rational deformation theories for
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laminated structures without introducing shear correction factors for the first-order theory or
using additional higher-order stress resultants for the higher-order theory. As is well known, in
these principles both the displacements ui and stresses σij are considered to be arbitrary. The
mixed variational principles can be applied to the fundamental mixed problem of the theory
of elasticity, in which the surface forces F ∗

i are prescribed over a part Sσ of the total surface
of the body and the displacements u∗

i are prescribed over the remaining surface Su.
The Maupertuis–Lagrange (M–L) principle states that the integral

W =
∫ t2

t1

2T dt (3.1)

has a stationary value for any part of an actual trajectory, provided that the energy of the
system is conserved;

T + " = constant = H, (3.2)

and the total variation of displacements $ui satisfies

$ui|t1 = $ui|t2 = 0. (3.3)

The kinetic energy T and the total potential energy " are given, respectively, by:

T = 1

2

∫∫∫
V

ρu̇iu̇i dV, (3.4)

" =
∫∫∫

V

[
σij εij − R(σij ) − Fiui

]
dV −

∫∫
Sσ

F ∗
i ui dS, (3.5)

where ρ = ρ(k) is the material density of layer k, Fi are the body forces and R(σij ) is called the
additional work (complementary energy density). The expression for R(σij ) of an orthotropic
structure takes the form [31, pp. 24–37]:

R(σij ) = 1
2 (a11σ 2

1 + a22σ 2
2 + a33σ 2

3 + a44σ 2
4 + a55σ 2

5 + a66σ 2
6 )

+a12σ1σ2 + a23σ2σ3 + a31σ3σ1,
(3.6)

where aij = a
(k)
ij are the compliance constants, which depend on the material properties

and orientation of the kth layer. Here, we have written σ1, σ2, σ3, σ4, σ5, σ6 in place of the
conventional σrr, σθθ , σzz, σθz, σrz and σrθ .

Now, the problem is to determine the extremum of the functional (3.1), subject to condition
(3.2). We introduce the Lagrange’s multipliers λ and λi to obtain the unconditional functional

J = W +
∫ t2

t1

[
λ(T + " − H) +

∫∫
Su

λi

(
ui − u∗

i

)
dS

]
dt. (3.7)

The extremum condition of the above functional takes place when (for more details, we refer
to Zenkour [23])

λ = −1 and λi = njσij , (3.8)

where nj are the components of the unit vector along the outward normal to the surface.
Therefore, we get the M–L mixed variational formula (3.7) in the following final form [22,
23]:
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J =
∫ t2

t1

[
T − " + H +

∫∫
Su

nj σij

(
ui − u∗

i

)
dS

]
dt. (3.9)

For this problem, the stress components are given by the author’s previous paper [22] as
follows:

σ1 = −p

4

[
2 − 3

(
ξ

h/2

)
+
(

ξ

h/2

)3
]

− q

4

[
2 + 3

(
ξ

h/2

)
−
(

ξ

h/2

)3
]

,

σ2 = N2

h
+ 12M2

h3
ξ, σ3 =

[
N3

h
+ 12M3

h3
ξ

](
1 + ξ

R

)−1

,

σ5 = 3Q

2h

[
1 −

(
ξ

h/2

)2
](

1 + ξ

R

)−1

, σ4 = σ6 = 0,

(3.10)

where (N2, N3, Q) are the in-plane tangential, axial and shearing forces, respectively, and
(M2, M3) are bending moments

{N2, N3, Q} =
∫ +h/2

−h/2

{
σ2, σ3

(
1 + ξ

R

)
, σ5

(
1 + ξ

R

)}
dξ,

{M2, M3} =
∫ +h/2

−h/2
ξ

{
σ2, σ3

(
1 + ξ

R

)}
dξ.

(3.11)

It is clear that the transverse shear stress σ5 is continuous through the thickness and van-
ishes on the bounding surface of the shell. Also, the radial stress σ1 has extremum values on
the inner and outer cylindrical surfaces of the shell and satisfies the conditions

σ1 = −p(z) at ξ = ξ0 and σ1 = −q(z) at ξ = ξN . (3.12)

In addition, this radial stress is the same for all shell theories and various lamination schemes
and boundary conditions.

4. Governing equations

The static model of the M–L mixed variational formula (3.9) is used to derive the equilibrium
and constitutive equations of the axisymmetric shear deformable laminated circular cylindri-
cal shell. This formula will be applied to the present problem in the absence of the body
forces and prescribed displacements. Substituting Equations (2.5), (2.6), and (3.10) in the
functional Equation (3.9), we can easily get the total variation of this functional. In this case,
the extremum condition gives the following system of equilibrium equations:

δu : dQ

dz
+
(

α + 3h2

20
γ

)
dQ̂

dz
− N2

R
− h

2R
(p + q) + (p − q) = 0, (4.1)

δw : dN3

dz
= 0, δϕ : −

(
β + 3h2

20
γ

)
Q̂ = 0, (4.2) (4.3)

where
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Q̂ = Q − dM3

dz
. (4.4)

Clearly, the above equilibrium equations do not contain any correction factors for FST and
have the same stress resultants for HST and FST. The extremum condition gives also the
following constitutive equations:




N2

N3

Q

M2

M3




=




A22 A23 0 B22 B23

A33 0 B23 B33

A55 0 0

D22 D23

symm. D33




−1




u

R
+ f2

dw

dz
+ f3

(
1 + α + 3h2

20
γ

)
du

dz
+
(

β + 3h2

20
γ

)
ϕ

g2(
α + 3h2

20
γ

)
d2u

dz2
+
(

β + 3h2

20
γ

)
dϕ

dz
+ g3




. (4.5)

The following definitions are used in the above equation:

{
Aij , Bij , Dij

} =
N∑

k=1

∫ ξk

ξk−1

a
(k)
ij

{
1

h2
,

12

h4
ξ,

144

h6
ξ 2

}(
1 + ξ

R

)η

dξ, (4.6)

A55 = 9

4h2

N∑
k=1

∫ ξk

ξk−1

a
(k)
55

[
1 −

(
ξ

h/2

)2
]2 (

1 + ξ

R

)−1

dξ, (4.7)

fj = A
(−1)
1j p + A

(+1)
1j q, gj = B

(−1)
1j p + B

(+1)
1j q, (4.8)

and{
A

(λ)

1j , B
(λ)

1j

}
=

N∑
k=1

∫ ξk

ξk−1

a
(k)

1j

4

{
1

h
,

12

h3
ξ

}[
2 + 3λ

(
ξ

h/2

)
− λ

(
ξ

h/2

)3
](

1 + ξ

R

)3−j

dξ, (4.9)

where

i, j = 2, 3; λ = ±1; η =




1 if i = j = 2,

0 if i �= j,

−1 if i = j = 3.

(4.10)

In addition to the above equilibrium and constitutive equations, the M–L mixed variational
formula indicates that the essential and the natural boundary conditions of the problem are
given in Table 1.

5. Analytical solutions

The solution procedure used in Zenkour [22] will be extended here in order to analyze the
bending of cross-ply laminated cylindrical shells. The following three sets of boundary con-
ditions for simply supported (SS), clamped-simply supported (CS) and clamped (CC) at the
edges z = 0, L for the three theories are used:
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Table 1. Boundary conditions

Essential Natural

u Q +
(

α + 3h2

20
γ

)
Q̂

w N3

du

dz

(
α + 3h2

20
γ

)
M3

ϕ

(
β + 3h2

20
γ

)
M3

HST : SS : u = N3 = M3 = 0 at z = 0, L;

CS : u = w = du

dz
= ϕ = 0 at z = 0; u = N3 = M3 = 0 at z = L;

CC : u = w = du

dz
= ϕ = 0 at z = 0, L.

(5.1)

FST : SS : u = N3 = M3 = 0 at z = 0, L;
CS : u = w = ϕ = 0 at z = 0; u = N3 = M3 = 0 at z = L;
CC : u = w = ϕ = 0 at z = 0, L.

(5.2)

CST : SS : u = N3 = M3 = 0 at z = 0, L;

CS : u = w = du

dz
= 0 at z = 0; u = N3 = M3 = 0 at z = L;

CC : u = w = du

dz
= 0 at z = 0, L.

(5.3)

The following representation for the displacement quantities is appropriate in the analysis of
the bending problem:


u

w

ϕ


 =




Um χ(µmz)

Wm χ ′(µmz)

9m χ ′(µmz)


 . (5.4)

The function χ(µmz) can be constructed for any arbitrary combination of edge conditions.
The different forms of χ(µmz) and the corresponding values of µm are defined in [22] (see
also [32, pp. 339–343]). The representation given for u, w, and ϕ in Equation (5.4) is valid
for all three theories: HST, FST and CST. In addition, the following sinusoidally distributed
loads are used

{p(z), q(z)} = {p0, q0} sin
πz

L
, (5.5)
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where p0 and q0 represent the intensity of the internal and external loads at the center of the
shell, respectively.

Substitution of Equations (5.4) and (5.5), with the aid of Equation (4.5), in the static form
of the total variation of the functional Equation (3.9) yields a set of three (two) algebraic
equations in terms of the unknown amplitudes Um, Wm and 9m for HST and FST (Um and
Wm for CST). These equations can be expressed in matrix form as

[C] {$} = {F } , (5.6)

where {$} and {F } denote the columns

{$}T = {Um, Wm, 9m} ,

{F }T = {
F m

1 , F m
2 , F m

3

}
,


 for HST and FST, (5.7)

or

{$}T = {Um, Wm} ,

{F }T = {
F m

1 , F m
2

}
,


 for CST. (5.8)

For all theories and various boundary conditions, the elements of matrix [C] and force vector
{F } are defined in Appendix B.

Thus, for a given χ(µmz), F m
i (m = 1), and cross-ply construction, one needs to solve the

3 × 3 (2 × 2 for CST) matrix Equation (5.6) for the vector of amplitudes of the generalized
displacements.

6. Numerical results

The numerical applications are done for symmetric and antisymmetric cross-ply circular cylin-
drical shells. It is assumed that the thickness and the material properties for all laminae are
the same. The results were produced for a typical graphite/epoxy material with moduli of
106 psi and Poisson’s ratios listed below, where subscript 1 is the radial r-direction, 2 the
circumferential θ-direction, and 3 the axial z-direction: E1 = 19·2, E2 = 1·456, E3 = 1·56,
G12 = G13 = 0·82, G23 = 0·523, ν12 = ν31 = 0·24, and ν32 = 0·49. For the present problem,
the compliances aij may be expressed in terms of the engineering orthotropic characteristics
as:

a22 = 1

E2
, a33 = 1

E3
, a12 = −ν12

E1
, a13 = −ν31

E3
, a23 = −ν32

E3
, a55 = 1

G13
.

We will assume in all the analyzed cases (unless otherwise stated) that q0 = 0, L/R = 1 and
R/h = 10.

The following nondimensional response characteristics

u

[
= u

(
ξ,

L

2

)
100h3

a22p0R4

]
; σ 2

[
= σ2

(
h

2
,

L

2

)
10h2

p0R2

]
; σ 3

[
= σ3

(
h

2
,

L

2

)
10h2

p0R2

]
,

determined as per the higher-order shell theory (HST), are compared with those obtained
by the classical (CST) and first-order (FST) shell theories. The numerical results for the
lamination schemes (0◦/90◦/. . . ) are displayed in Tables 2–5 as well as in Figures 2–9.
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Table 2. The effect of radius-to-thickness ratio on the center deflection (u) of cross-ply circular cylindrical
shells for various boundary conditions

R/h Theory 0◦/90◦ 0◦/90◦/ 0◦ 0◦/90◦/. . . 10 layers

SS CS CC SS CS CC SS CS CC

2 HST 6·8442 2·9693 1·7662 6·9849 3·0058 1·7824 7·1768 3·0698 1·8091

FST 6·9183 2·9875 1·7703 7·0548 3·0226 1·7862 7·2327 3·0835 1·8122

CST 4·9750 1·5361 0·5928 5·0473 1·5378 0·5893 5·2718 1·6145 0·6204

4 HST 3·3839 1·4545 0·7825 3·4439 1·4663 0·7845 3·4691 1·4833 0·7944

FST 3·3963 1·4591 0·7843 3·4558 1·4705 0·7862 3·4787 1·4868 0·7958

CST 3·2236 1·2562 0·5645 3·2764 1·2601 0·5604 3·3082 1·2835 0·5748

10 HST 0·8315 0·4284 0·2616 0·8472 0·4345 0·2638 0·8411 0·4329 0·2640

FST 0·8321 0·4287 0·2618 0·8477 0·4348 0·2640 0·8415 0·4331 0·2641

CST 0·8302 0·4249 0·2546 0·8459 0·4309 0·2564 0·8397 0·4295 0·2570

20 HST 0·2290 0·1262 0·0849 0·2329 0·1282 0·0860 0·2304 0·1270 0·0854

FST 0·2290 0·1262 0·0849 0·2329 0·1282 0·0860 0·2305 0·1270 0·0854

CST 0·2290 0·1261 0·0847 0·2329 0·1281 0·0858 0·2304 0·1269 0·0852

Table 3. The effect of radius-to-thickness ratio on the circumferential stress (σ2) of cross-ply circular
cylindrical shells for various boundary conditions

R/h Theory 0◦/90◦ 0◦/90◦/ 0◦ 0◦/90◦/. . . 10 layers

SS CS CC SS CS CC SS CS CC

2 HST 2·3918 1·1192 0·6563 2·3245 1·0938 0·6434 2·4828 1·1833 0·6999

FST 2·4342 1·1365 0·6648 2·3625 1·1092 0·6510 2·5137 1·1959 0·7061

CST 2·3399 0·9969 0·5131 2·2776 0·9789 0·5090 2·4341 1·0668 0·5630

4 HST 2·1990 1·1271 0·6737 2·1146 1·0814 0·6445 2·1793 1·1243 0·6737

FST 2·2088 1·1319 0·6763 2·1234 1·0856 0·6468 2·1865 1·1278 0·6757

CST 2·2256 1·1176 0·6357 2·1420 1·0729 0·6085 0·2063 1·1168 0·6386

10 HST 1·1217 0·6777 0·4759 1·0706 0·6488 0·4553 1·0861 0·6600 0·4649

FST 1·1225 0·6781 0·4762 1·0713 0·6493 0·4556 1·0866 0·6603 0·4651

CST 1·1261 0·6820 0·4792 1·0750 0·6533 0·4587 1·0902 0·6643 0·4683

20 HST 0·5635 0·3511 0·2639 0·5341 0·3346 0·2521 0·5407 0·3387 0·2554

FST 0·5636 0·3512 0·2639 0·5342 0·3347 0·2522 0·5407 0·3387 0·2554

CST 0·5639 0·3517 0·2647 0·5345 0·3352 0·2530 0·5411 0·3393 0·2562

To assess the importance of shear deformation, the numerical results obtained by all theo-
ries have been compared for various boundary conditions and lamination schemes in Tables 2–
5. Center deflection, circumferential stress and axial stress of two, three and ten-layer cross-ply
cylindrical shells are presented, respectively, in Tables 2–4 as functions of radius-to-thickness
ratio (R/h). Table 5 emphasizes the effect of the intensity of external-to-internal loads ratio
(q0/p0) on the deflection (u) and stresses (σ 2, σ 3) for a four-layer symmetric cross-ply circular
cylindrical shell.

In Figures 2–8, only the higher-order shell theory is used. Figures 2–4 display, respectively,
the variation of u, σ 2 and σ 3 vs. R/h for a (0◦/90◦/90◦/0◦) circular cylindrical shell with dif-
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Table 4. The effect of radius-to-thickness ratio on the axial stress (σ 3) of cross-ply circular cylindrical
shells for various boundary conditions

R/h Theory 0◦/90◦ 0◦/90◦/ 0◦ 0◦/90◦/. . . 10 layers

SS CS CC SS CS CC SS CS CC

2 HST 2·3430 1·2239 0·7313 2·3908 1·2435 0·7410 2·3757 1·2189 0·7192

FST 2·3960 1·2492 0·7452 2·4413 1·2674 0·7541 2·4151 1·2377 0·7295

CST 2·8102 1·4304 0·8206 2·8701 1·4524 0·8303 2·8376 1·4226 0·8063

4 HST 1·7590 1·1270 0·7446 1·7932 1·1465 0·7538 1·7496 1·1243 0·7422

FST 1·7685 1·1328 0·7483 1·8022 1·1520 0·7573 1·7567 1·1286 0·7450

CST 1·9281 1·2545 0·8315 1·9697 1·2781 0·8422 1·9170 1·2517 0·8291

10 HST 0·5280 0·4753 0·4159 0·5266 0·4838 0·4245 0·5089 0·4691 0·4139

FST 0·5285 0·4757 0·4162 0·5270 0·4841 0·4248 0·5092 0·4694 0·4142

CST 0·5397 0·4913 0·4371 0·5386 0·5006 0·4468 0·5201 0·4850 0·4351

20 HST 0·1584 0·1702 0·1708 0·1507 0·1706 0·1738 0·1466 0·1656 0·1688

FST 0·1585 0·1702 0·1709 0·1507 0·1706 0·1738 0·1466 0·1656 0·1688

CST 0·1594 0·1717 0·1734 0·1516 0·1721 0·1765 0·1474 0·1670 0·1714

Table 5. The effect of q0/p0 ratio on u, σ2 and σ 3 of a (0◦/90◦/90◦/0◦) circular cylindrical shell for various
boundary conditions

q0/p0 Theory u σ 2 σ 3

SS CS CC SS CS CC SS CS CC

0·2 HST 0·6571 0·3380 0·2057 0·8346 0·5049 0·3546 0·4055 0·3719 0·3273

FST 0·6575 0·3382 0·2058 0·8352 0·5053 0·3548 0·4058 0·3722 0·3275

CST 0·6561 0·3352 0·2001 0·8380 0·5084 0·3573 0·4147 0·3352 0·3445

0·5 HST 0·3818 0·1974 0·1205 0·4804 0·2885 0·2023 0·2363 0·2130 0·1874

FST 0·3820 0·1976 0·1205 0·4808 0·2887 0·2025 0·2365 0·2131 0·1876

CST 0·3812 0·1958 0·1171 0·4824 0·2905 0·2039 0·2416 0·2205 0·1975

0·7 HST 0·1982 0·1037 0·0636 0·2443 0·1442 0·1008 0·1234 0·1070 0·0942

FST 0·1983 0·1038 0·0637 0·2445 0·1444 0·1009 0·1235 0·1070 0·0943

CST 0·1979 0·1029 0·0619 0·2454 0·1453 0·1016 0·1262 0·1110 0·0995

1·0 HST −0·0772 −0·0369 −0·0217 −0·1099 −0·0722 −0·0515 −0·0458 −0·0520 −0·0456

FST −0·0772 −0·0369 −0·0217 −0·1099 −0·0722 −0·0515 −0·0458 −0·0520 −0·0457

CST −0·0770 −0·0366 −0·0211 −0·1102 −0·0725 −0·0517 −0·0468 −0·0534 −0·0474

ferent values of q0/p0 ratio. Also, Figures 5–7 display, respectively, the variation of u, σ 2 and
σ 3 vs. L/R for a (0◦/90◦/0◦/90◦) circular cylindrical shell. Figure 8 displays the variation of u

vs. the orthotropy ratio (a33/a22) for a (0◦/90◦/0◦) circular cylindrical shell. Finally, Figure 9
displays the plots of σ 1

[= σ1(ξ, L/2)/p0
]

through the thickness of the shell for different
values of q0/p0 ratio.
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Figure 2. Maximum deflection vs. radius-to-thickness ratio of a (0◦/90◦/90◦/0◦) circular cylindrical shell sub-
jected to: (a) simply supported edge conditions, (b) clamped-simply supported edge conditions, (c) clamped edge
conditions.

Figure 3. Circumferential stress vs. radius-to-thickness ratio of a (0◦/90◦/90◦/0◦) circular cylindrical shell sub-
jected to: (a) simply supported edge conditions, (b) clamped-simply supported edge conditions, (c) clamped edge
conditions.

7. Conclusions and discussion

The M–L mixed variational formula in conjunction with the Ritz method has been used
to develop both the analytical and numerical solutions for bending analysis of a cross-ply
axisymmetric shear deformable circular cylindrical shell. Several sets of numerical results
for deflections and stresses are presented to show the effect of shear deformation, number
of layers, boundary conditions, orthotropy ratio and loadings ratio on the static response
of composite cylindrical shells. The numerical results presented in Tables 2–5 allow one to
conclude the following:

(i) For thick shells the effect of transverse shear deformation must always be incorporated
into the analysis, because CST underpredicts the deflections and overpredicts the stresses
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Figure 4. Axial stress vs. radius-to-thickness ratio of a (0◦/90◦/90◦/0◦) circular cylindrical shell subjected to:
(a) simply supported edge conditions, (b) clamped-simply supported edge conditions, (c) clamped edge conditions.

Figure 5. Effect of length-to-radius ratio (L/R) on u of a (0◦/90◦/0◦/90◦) circular cylindrical shell subjected to
various boundary conditions.

when compared to FST and HST. An exception to this observation is provided by all boundary
conditions for the case of R/h = 2 and by CS and CC boundary conditions for the case of
R/h = 4 (see Table 3). For R/h = 2, the relative errors of σ 2 predicted by CST differ
by about 2%, 10% and 20% for shells subjected to SS, CS, and CC boundary conditions,
respectively. Increasing the number of antisymmetric layers, for the same total thickness, will
decrease the absolute relative errors CST-HST of deflections and stresses for all boundary
conditions. In general, for thick and moderately thick shells with all boundary conditions, the
symmetric cross-ply stacking sequence gives circumferential and axial stresses as predicted
by CST with greater absolute relative errors than those of antisymmetric ones do. Moreover,
the percentage errors CST-HST decrease (versus R/h) slowly in the case of axial stress when
compared to the circumferential stress.
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Figure 6. Effect of length-to-radius ratio (L/R) on σ2
of a (0◦/90◦/0◦/90◦) circular cylindrical shell subjected
to various boundary conditions.

Figure 7. Effect of length-to-radius ratio (L/R) on σ 3
of a (0◦/90◦/0◦/90◦) circular cylindrical shell subjected
to various boundary conditions.

Figure 8 Effect of orthotropy ratio (a33/a22) on the center deflection (u) of a (0◦/90◦/0◦) circular cylindrical shell
for various boundary conditions.

(ii) For thin shells the results predicted by the classical theory and the shear deforma-
tion theories are in excellent agreement. For moderately thick SS {CS and CC} shells, it is
seen that the symmetric cross-ply stacking sequence gives deflection, for example, with a
smaller {greater} relative error than those of antisymmetric ones do. In antisymmetric cross-
ply arrangements, an increasing number of layers, for the same total thickness, will increase
{decrease} the relative error. In this sense, the relative errors of deflection predicted by CST are
0·16%, 0·82%, and 2·68% for two-layer antisymmetric cross-ply cylindrical shells subjected
to SS, CS, and CC boundary conditions, respectively.
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Figure 9 Plots of the radial stress (σ1) through the thickness of the shell.

(iii) The FST slightly overpredicts the deflections and stresses for shells subjected to var-
ious boundary conditions. The variation of the results obtained as per HST and FST exhibits
a small difference, which increases when R/h decreases (see Tables 2–4). In fact, FST yields
identical results with HST for thin shells and also for moderately thick shells under equal
loads (q0/p0 = 1) and this irrespective of the considered boundary conditions (see Table 5).

Next, we will turn our attention to the effect of the boundary conditions, radius-to-thickness
ratio, loadings ratio and length-to-radius ratio on the deflections and stresses of four-layer,
symmetric and antisymmetric cross-ply cylindrical shells using HST only. Figures 2–7 are
very revealing in this respect. In this sense the SS instance shows the highest sensitivity in the
context of the considered edge conditions.

Figure 8 reveals that the variation of u is sensitive to the variation of the orthotropy ratio
(a33/a22) and this depending on the considered boundary conditions. Figure 9 reveals also
the sensitivity of σ 1 to the variation of ξ/h parameter depending on the considered q0/p0

ratios. However, the case q0/p0 = 1 constitutes an exception, in the sense that the considered
variation of ξ/h has no effect on the variation of σ 1.

In general, the obtained results imply that the classical shell theory needs to be modi-
fied. It fails to predict accurately the static response when the cylindrical shells are thick or
moderately thick. However, it provides reliable results compared to the shear deformation
theories for thin shells. The first-order shell theory does not require the incorporation of shear
correction factors and yields results that are very close to those of the higher-order theory. The
analytical solutions presented here for cross-ply axisymmetric shear deformable laminated
closed circular cylindrical shells subjected to arbitrary boundary conditions should serve as
benchmark solutions for future comparisons.

Concerning the mathematical tool, namely the mixed variational approach, used in the
determination of the state of stress and displacement of cylindrical shells for various edge
conditions, it was shown to have great computational efficiency. It allows one to deal with the
higher-order shell theory without using additional higher-order stress resultants and material
stiffness coefficients. Moreover, when a representation of the displacement field consistent
with the first-order shell theory is considered, its use precludes the incorporation of a shear
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correction factor. The mixed variational approach is also capable of providing solutions for
the buckling and free-vibration problems of laminated cylindrical shells. The free-vibration
problem has been presented in [22], while the buckling problem will be analyzed in another
work.

Appendix A. Notation

The following symbols are given in this paper:

a, b the inner and outer radii of the section of the shell

Aij , Bij , Dij extensional, coupling, and bending stiffnesses

aij compliance constants (strain coefficients)

Ei Young’s moduli

ξ thickness coordinate

ξ0, ξN the inner (ξ0 = −h/2) and outer (ξN = +h/2) surfaces of the shell

ξk−1, ξk the inner and outer ξ -coordinates of the kth lamina

ϕ the rotation at ξ = 0 of normal to the mid-surface

Gij shear moduli

h, L total thickness and length of the shell

N number of layers of the shell

Ni, Mi, Q normal stress, moment, and shear stress resultants

νij Poisson’s ratios

R radius of the mid-surface of the shell

r, θ, z radial, circumferential, and axial cylindrical coordinates

p, q internal and external loads applied on lateral surface of the shell

u, w displacements of a point on the mid-surface

ui, σij , εij displacement, stress, and strain components

Um, Wm, 9m amplitudes of u, w, ϕ associated with mth axial component

ur, uz radial and axial displacements

Appendix B.

The elements Cij = Cji of matrix [C] are given by:

C11 = A∗
22

R2
>1 + µ2

m

(
α + 3h2

20
γ

)[
2B∗

23

R
>4 + D∗

33>3µ2
m

(
α + 3h2

20
γ

)]

+A∗
55>2µ2

m

(
1 + α + 3h2

20
γ

)2

,

C12 = A∗
23

R
>4µm + B∗

33>3µ
3
m

(
α + 3h2

20
γ

)
,
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C13 = µm

(
β + 3h2

20
γ

)[
A∗

55>2

(
1 + α + 3h2

20
γ

)
+ B∗

23

R
>4 + D∗

33>3µ2
m

(
α + 3h2

20
γ

)]
,

C22 = A∗
33>3µ2

m, C23 = B∗
33>3µ2

m

(
β + 3h2

20
γ

)
, C33=

(
β+3h2

20
γ

)2[
A∗

55>2 + D∗
33>3µ

2
m

]
,

where


A∗
22 A∗

23 0 B∗
22 B∗

23

A∗
33 0 B∗

32 B∗
33

A∗
55 0 0

D∗
22 D∗

23

symm. D∗
33




=
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A33 0 B23 B33

A55 0 0

D22 D23
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−1

,

and

>1 = ∫ L

0

[
χ(µmz)

]2
dz, >2 = ∫ L

0

[
χ ′(µmz)

]2
dz,

>3 = ∫ L

0

[
χ ′′(µmz)

]2
dz, >4 = ∫ L

0 χ(µmz)χ ′′(µmz) dz.

Also the elements of the force vector are given by

F m
1 =
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2R
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where

>5 =
∫ L

0
χ(µmz) sin

πz

L
dz, >6 =

∫ L

0
χ ′′(µmz) sin

πz

L
dz.
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